Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On Multi-Relational Link Prediction with Bilinear Models (1709.04808v1)

Published 14 Sep 2017 in cs.LG

Abstract: We study bilinear embedding models for the task of multi-relational link prediction and knowledge graph completion. Bilinear models belong to the most basic models for this task, they are comparably efficient to train and use, and they can provide good prediction performance. The main goal of this paper is to explore the expressiveness of and the connections between various bilinear models proposed in the literature. In particular, a substantial number of models can be represented as bilinear models with certain additional constraints enforced on the embeddings. We explore whether or not these constraints lead to universal models, which can in principle represent every set of relations, and whether or not there are subsumption relationships between various models. We report results of an independent experimental study that evaluates recent bilinear models in a common experimental setup. Finally, we provide evidence that relation-level ensembles of multiple bilinear models can achieve state-of-the art prediction performance.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.