Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Efficient Evolutionary Based Method For Image Segmentation (1709.04393v2)

Published 13 Sep 2017 in cs.CV

Abstract: The goal of this paper is to present a new efficient image segmentation method based on evolutionary computation which is a model inspired from human behavior. Based on this model, a four layer process for image segmentation is proposed using the split/merge approach. In the first layer, an image is split into numerous regions using the watershed algorithm. In the second layer, a co-evolutionary process is applied to form centers of finals segments by merging similar primary regions. In the third layer, a meta-heuristic process uses two operators to connect the residual regions to their corresponding determined centers. In the final layer, an evolutionary algorithm is used to combine the resulted similar and neighbor regions. Different layers of the algorithm are totally independent, therefore for certain applications a specific layer can be changed without constraint of changing other layers. Some properties of this algorithm like the flexibility of its method, the ability to use different feature vectors for segmentation (grayscale, color, texture, etc), the ability to control uniformity and the number of final segments using free parameters and also maintaining small regions, makes it possible to apply the algorithm to different applications. Moreover, the independence of each region from other regions in the second layer, and the independence of centers in the third layer, makes parallel implementation possible. As a result the algorithm speed will increase. The presented algorithm was tested on a standard dataset (BSDS 300) of images, and the region boundaries were compared with different people segmentation contours. Results show the efficiency of the algorithm and its improvement to similar methods. As an instance, in 70% of tested images, results are better than ACT algorithm, besides in 100% of tested images, we had better results in comparison with VSP algorithm.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.