Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection (1709.04347v2)

Published 13 Sep 2017 in cs.CV

Abstract: In this paper, we propose a zoom-out-and-in network for generating object proposals. A key observation is that it is difficult to classify anchors of different sizes with the same set of features. Anchors of different sizes should be placed accordingly based on different depth within a network: smaller boxes on high-resolution layers with a smaller stride while larger boxes on low-resolution counterparts with a larger stride. Inspired by the conv/deconv structure, we fully leverage the low-level local details and high-level regional semantics from two feature map streams, which are complimentary to each other, to identify the objectness in an image. A map attention decision (MAD) unit is further proposed to aggressively search for neuron activations among two streams and attend the most contributive ones on the feature learning of the final loss. The unit serves as a decisionmaker to adaptively activate maps along certain channels with the solely purpose of optimizing the overall training loss. One advantage of MAD is that the learned weights enforced on each feature channel is predicted on-the-fly based on the input context, which is more suitable than the fixed enforcement of a convolutional kernel. Experimental results on three datasets, including PASCAL VOC 2007, ImageNet DET, MS COCO, demonstrate the effectiveness of our proposed algorithm over other state-of-the-arts, in terms of average recall (AR) for region proposal and average precision (AP) for object detection.

Citations (76)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube