Emergent Mind

Abstract

Deep reinforcement learning (deep RL) has achieved superior performance in complex sequential tasks by using a deep neural network as its function approximator and by learning directly from raw images. A drawback of using raw images is that deep RL must learn the state feature representation from the raw images in addition to learning a policy. As a result, deep RL can require a prohibitively large amount of training time and data to reach reasonable performance, making it difficult to use deep RL in real-world applications, especially when data is expensive. In this work, we speed up training by addressing half of what deep RL is trying to solve learning features. Our approach is to learn some of the important features by pre-training deep RL network's hidden layers via supervised learning using a small set of human demonstrations. We empirically evaluate our approach using deep Q-network (DQN) and asynchronous advantage actor-critic (A3C) algorithms on the Atari 2600 games of Pong, Freeway, and Beamrider. Our results show that: 1) pre-training with human demonstrations in a supervised learning manner is better at discovering features relative to pre-training naively in DQN, and 2) initializing a deep RL network with a pre-trained model provides a significant improvement in training time even when pre-training from a small number of human demonstrations.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.