Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Induced 2-degenerate Subgraphs of Triangle-free Planar Graphs (1709.04036v2)

Published 12 Sep 2017 in math.CO and cs.DM

Abstract: A graph is $k$-degenerate if every subgraph has minimum degree at most $k$. We provide lower bounds on the size of a maximum induced 2-degenerate subgraph in a triangle-free planar graph. We denote the size of a maximum induced 2-degenerate subgraph of a graph $G$ by $\alpha_2(G)$. We prove that if $G$ is a connected triangle-free planar graph with $n$ vertices and $m$ edges, then $\alpha_2(G) \geq \frac{6n - m - 1}{5}$. By Euler's Formula, this implies $\alpha_2(G) \geq \frac{4}{5}n$. We also prove that if $G$ is a triangle-free planar graph on $n$ vertices with at most $n_3$ vertices of degree at most three, then $\alpha_2(G) \geq \frac{7}{8}n - 18 n_3$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.