Papers
Topics
Authors
Recent
2000 character limit reached

Affective Neural Response Generation (1709.03968v1)

Published 12 Sep 2017 in cs.CL, cs.AI, cs.CY, cs.HC, and cs.IR

Abstract: Existing neural conversational models process natural language primarily on a lexico-syntactic level, thereby ignoring one of the most crucial components of human-to-human dialogue: its affective content. We take a step in this direction by proposing three novel ways to incorporate affective/emotional aspects into long short term memory (LSTM) encoder-decoder neural conversation models: (1) affective word embeddings, which are cognitively engineered, (2) affect-based objective functions that augment the standard cross-entropy loss, and (3) affectively diverse beam search for decoding. Experiments show that these techniques improve the open-domain conversational prowess of encoder-decoder networks by enabling them to produce emotionally rich responses that are more interesting and natural.

Citations (152)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.