Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Language Models of Spoken Dutch (1709.03759v1)

Published 12 Sep 2017 in cs.CL

Abstract: In Flanders, all TV shows are subtitled. However, the process of subtitling is a very time-consuming one and can be sped up by providing the output of a speech recognizer run on the audio of the TV show, prior to the subtitling. Naturally, this speech recognition will perform much better if the employed LLM is adapted to the register and the topic of the program. We present several LLMs trained on subtitles of television shows provided by the Flemish public-service broadcaster VRT. This data was gathered in the context of the project STON which has as purpose to facilitate the process of subtitling TV shows. One model is trained on all available data (46M word tokens), but we also trained models on a specific type of TV show or domain/topic. LLMs of spoken language are quite rare due to the lack of training data. The size of this corpus is relatively large for a corpus of spoken language (compare with e.g. CGN which has 9M words), but still rather small for a LLM. Thus, in practice it is advised to interpolate these models with a large background LLM trained on written language. The models can be freely downloaded on http://www.esat.kuleuven.be/psi/spraak/downloads/.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.