Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What were you expecting? Using Expectancy Features to Predict Expressive Performances of Classical Piano Music (1709.03629v1)

Published 11 Sep 2017 in cs.SD, cs.IT, cs.LG, and math.IT

Abstract: In this paper we present preliminary work examining the relationship between the formation of expectations and the realization of musical performances, paying particular attention to expressive tempo and dynamics. To compute features that reflect what a listener is expecting to hear, we employ a computational model of auditory expectation called the Information Dynamics of Music model (IDyOM). We then explore how well these expectancy features -- when combined with score descriptors using the Basis-Function modeling approach -- can predict expressive tempo and dynamics in a dataset of Mozart piano sonata performances. Our results suggest that using expectancy features significantly improves the predictions for tempo.

Citations (2)

Summary

We haven't generated a summary for this paper yet.