Papers
Topics
Authors
Recent
2000 character limit reached

Evaluation of Classical Features and Classifiers in Brain-Computer Interface Tasks (1709.03252v2)

Published 11 Sep 2017 in cs.HC and stat.ML

Abstract: Brain-Computer Interface (BCI) uses brain signals in order to provide a new method for communication between human and outside world. Feature extraction, selection and classification are among the main matters of concerns in signal processing stage of BCI. In this article, we present our findings about the most effective features and classifiers in some brain tasks. Six different groups of classical features and twelve classifiers have been examined in nine datasets of brain signal. The results indicate that energy of brain signals in {\alpha} and \b{eta} frequency bands, together with some statistical parameters are more effective, comparing to the other types of extracted features. In addition, Bayesian classifier with Gaussian distribution assumption and also Support Vector Machine (SVM) show to classify different BCI datasets more accurately than the other classifiers. We believe that the results can give an insight about a strategy for blind classification of brain signals in brain-computer interface.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.