Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stable super-resolution limit and smallest singular value of restricted Fourier matrices (1709.03146v4)

Published 10 Sep 2017 in cs.IT and math.IT

Abstract: We consider the inverse problem of recovering the locations and amplitudes of a collection of point sources represented as a discrete measure, given $M+1$ of its noisy low-frequency Fourier coefficients. Super-resolution refers to a stable recovery when the distance $\Delta$ between the two closest point sources is less than $1/M$. We introduce a clumps model where the point sources are closely spaced within several clumps. Under this assumption, we derive a non-asymptotic lower bound for the minimum singular value of a Vandermonde matrix whose nodes are determined by the point sources. Our estimate is given as a weighted $\ell2$ sum, where each term only depends on the configuration of each individual clump. The main novelty is that our lower bound obtains an exact dependence on the {\it Super-Resolution Factor} $SRF=(M\Delta){-1}$. As noise level increases, the {\it sensitivity of the noise-space correlation function in the MUSIC algorithm} degrades according to a power law in $SRF$ where the exponent depends on the cardinality of the largest clump. Numerical experiments validate our theoretical bounds for the minimum singular value and the sensitivity of MUSIC. We also provide lower and upper bounds for a min-max error of super-resolution for the grid model, which in turn is closely related to the minimum singular value of Vandermonde matrices.

Citations (73)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.