Efficient Online Linear Optimization with Approximation Algorithms (1709.03093v1)
Abstract: We revisit the problem of \textit{online linear optimization} in case the set of feasible actions is accessible through an approximated linear optimization oracle with a factor $\alpha$ multiplicative approximation guarantee. This setting is in particular interesting since it captures natural online extensions of well-studied \textit{offline} linear optimization problems which are NP-hard, yet admit efficient approximation algorithms. The goal here is to minimize the $\alpha$\textit{-regret} which is the natural extension of the standard \textit{regret} in \textit{online learning} to this setting. We present new algorithms with significantly improved oracle complexity for both the full information and bandit variants of the problem. Mainly, for both variants, we present $\alpha$-regret bounds of $O(T{-1/3})$, were $T$ is the number of prediction rounds, using only $O(\log{T})$ calls to the approximation oracle per iteration, on average. These are the first results to obtain both average oracle complexity of $O(\log{T})$ (or even poly-logarithmic in $T$) and $\alpha$-regret bound $O(T{-c})$ for a constant $c>0$, for both variants.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.