Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient Online Linear Optimization with Approximation Algorithms (1709.03093v1)

Published 10 Sep 2017 in cs.LG and math.OC

Abstract: We revisit the problem of \textit{online linear optimization} in case the set of feasible actions is accessible through an approximated linear optimization oracle with a factor $\alpha$ multiplicative approximation guarantee. This setting is in particular interesting since it captures natural online extensions of well-studied \textit{offline} linear optimization problems which are NP-hard, yet admit efficient approximation algorithms. The goal here is to minimize the $\alpha$\textit{-regret} which is the natural extension of the standard \textit{regret} in \textit{online learning} to this setting. We present new algorithms with significantly improved oracle complexity for both the full information and bandit variants of the problem. Mainly, for both variants, we present $\alpha$-regret bounds of $O(T{-1/3})$, were $T$ is the number of prediction rounds, using only $O(\log{T})$ calls to the approximation oracle per iteration, on average. These are the first results to obtain both average oracle complexity of $O(\log{T})$ (or even poly-logarithmic in $T$) and $\alpha$-regret bound $O(T{-c})$ for a constant $c>0$, for both variants.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)