Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Model Distillation with Knowledge Transfer from Face Classification to Alignment and Verification (1709.02929v2)

Published 9 Sep 2017 in cs.CV

Abstract: Knowledge distillation is a potential solution for model compression. The idea is to make a small student network imitate the target of a large teacher network, then the student network can be competitive to the teacher one. Most previous studies focus on model distillation in the classification task, where they propose different architects and initializations for the student network. However, only the classification task is not enough, and other related tasks such as regression and retrieval are barely considered. To solve the problem, in this paper, we take face recognition as a breaking point and propose model distillation with knowledge transfer from face classification to alignment and verification. By selecting appropriate initializations and targets in the knowledge transfer, the distillation can be easier in non-classification tasks. Experiments on the CelebA and CASIA-WebFace datasets demonstrate that the student network can be competitive to the teacher one in alignment and verification, and even surpasses the teacher network under specific compression rates. In addition, to achieve stronger knowledge transfer, we also use a common initialization trick to improve the distillation performance of classification. Evaluations on the CASIA-Webface and large-scale MS-Celeb-1M datasets show the effectiveness of this simple trick.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube