Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimization assisted MCMC (1709.02888v1)

Published 9 Sep 2017 in stat.CO and cs.LG

Abstract: Markov Chain Monte Carlo (MCMC) sampling methods are widely used but often encounter either slow convergence or biased sampling when applied to multimodal high dimensional distributions. In this paper, we present a general framework of improving classical MCMC samplers by employing a global optimization method. The global optimization method first reduces a high dimensional search to an one dimensional geodesic to find a starting point close to a local mode. The search is accelerated and completed by using a local search method such as BFGS. We modify the target distribution by extracting a local Gaussian distribution aound the found mode. The process is repeated to find all the modes during sampling on the fly. We integrate the optimization algorithm into the Wormhole Hamiltonian Monte Carlo (WHMC) method. Experimental results show that, when applied to high dimensional, multimodal Gaussian mixture models and the network sensor localization problem, the proposed method achieves much faster convergence, with relative error from the mean improved by about an order of magnitude than WHMC in some cases.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.