Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimization assisted MCMC (1709.02888v1)

Published 9 Sep 2017 in stat.CO and cs.LG

Abstract: Markov Chain Monte Carlo (MCMC) sampling methods are widely used but often encounter either slow convergence or biased sampling when applied to multimodal high dimensional distributions. In this paper, we present a general framework of improving classical MCMC samplers by employing a global optimization method. The global optimization method first reduces a high dimensional search to an one dimensional geodesic to find a starting point close to a local mode. The search is accelerated and completed by using a local search method such as BFGS. We modify the target distribution by extracting a local Gaussian distribution aound the found mode. The process is repeated to find all the modes during sampling on the fly. We integrate the optimization algorithm into the Wormhole Hamiltonian Monte Carlo (WHMC) method. Experimental results show that, when applied to high dimensional, multimodal Gaussian mixture models and the network sensor localization problem, the proposed method achieves much faster convergence, with relative error from the mean improved by about an order of magnitude than WHMC in some cases.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.