Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semantic Preserving Embeddings for Generalized Graphs (1709.02759v1)

Published 7 Sep 2017 in cs.AI and cs.LG

Abstract: A new approach to the study of Generalized Graphs as semantic data structures using machine learning techniques is presented. We show how vector representations maintaining semantic characteristics of the original data can be obtained from a given graph using neural encoding architectures and considering the topological properties of the graph. Semantic features of these new representations are tested by using some machine learning tasks and new directions on efficient link discovery, entitity retrieval and long distance query methodologies on large relational datasets are investigated using real datasets. ---- En este trabajo se presenta un nuevo enfoque en el contexto del aprendizaje autom\'atico multi-relacional para el estudio de Grafos Generalizados. Se muestra c\'omo se pueden obtener representaciones vectoriales que mantienen caracter\'isticas sem\'anticas del grafo original utilizando codificadores neuronales y considerando las propiedades topol\'ogicas del grafo. Adem\'as, se eval\'uan las caracter\'isticas sem\'anticas capturadas por estas nuevas representaciones y se investigan nuevas metodolog\'ias eficientes relacionadas con Link Discovery, Entity Retrieval y consultas a larga distancia en grandes conjuntos de datos relacionales haciendo uso de bases de datos reales.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.