Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Preserving Embeddings for Generalized Graphs (1709.02759v1)

Published 7 Sep 2017 in cs.AI and cs.LG

Abstract: A new approach to the study of Generalized Graphs as semantic data structures using machine learning techniques is presented. We show how vector representations maintaining semantic characteristics of the original data can be obtained from a given graph using neural encoding architectures and considering the topological properties of the graph. Semantic features of these new representations are tested by using some machine learning tasks and new directions on efficient link discovery, entitity retrieval and long distance query methodologies on large relational datasets are investigated using real datasets. ---- En este trabajo se presenta un nuevo enfoque en el contexto del aprendizaje autom\'atico multi-relacional para el estudio de Grafos Generalizados. Se muestra c\'omo se pueden obtener representaciones vectoriales que mantienen caracter\'isticas sem\'anticas del grafo original utilizando codificadores neuronales y considerando las propiedades topol\'ogicas del grafo. Adem\'as, se eval\'uan las caracter\'isticas sem\'anticas capturadas por estas nuevas representaciones y se investigan nuevas metodolog\'ias eficientes relacionadas con Link Discovery, Entity Retrieval y consultas a larga distancia en grandes conjuntos de datos relacionales haciendo uso de bases de datos reales.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)

Summary

We haven't generated a summary for this paper yet.