Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank (1709.02311v2)

Published 7 Sep 2017 in cs.DS, cs.CC, math.CO, and math.RT

Abstract: For even $k$, the matchings connectivity matrix $\mathbf{M}_k$ encodes which pairs of perfect matchings on $k$ vertices form a single cycle. Cygan et al. (STOC 2013) showed that the rank of $\mathbf{M}_k$ over $\mathbb{Z}_2$ is $\Theta(\sqrt 2k)$ and used this to give an $O*((2+\sqrt{2}){\mathsf{pw}})$ time algorithm for counting Hamiltonian cycles modulo $2$ on graphs of pathwidth $\mathsf{pw}$. The same authors complemented their algorithm by an essentially tight lower bound under the Strong Exponential Time Hypothesis (SETH). This bound crucially relied on a large permutation submatrix within $\mathbf{M}_k$, which enabled a "pattern propagation" commonly used in previous related lower bounds, as initiated by Lokshtanov et al. (SODA 2011). We present a new technique for a similar pattern propagation when only a black-box lower bound on the asymptotic rank of $\mathbf{M}_k$ is given; no stronger structural insights such as the existence of large permutation submatrices in $\mathbf{M}_k$ are needed. Given appropriate rank bounds, our technique yields lower bounds for counting Hamiltonian cycles (also modulo fixed primes $p$) parameterized by pathwidth. To apply this technique, we prove that the rank of $\mathbf{M}_k$ over the rationals is $4k / \mathrm{poly}(k)$. We also show that the rank of $\mathbf{M}_k$ over $\mathbb{Z}_p$ is $\Omega(1.97k)$ for any prime $p\neq 2$ and even $\Omega(2.15k)$ for some primes. As a consequence, we obtain that Hamiltonian cycles cannot be counted in time $O*((6-\epsilon){\mathsf{pw}})$ for any $\epsilon>0$ unless SETH fails. This bound is tight due to a $O*(6{\mathsf{pw}})$ time algorithm by Bodlaender et al. (ICALP 2013). Under SETH, we also obtain that Hamiltonian cycles cannot be counted modulo primes $p\neq 2$ in time $O*(3.97\mathsf{pw})$, indicating that the modulus can affect the complexity in intricate ways.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.