Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Improving Sonar Image Patch Matching via Deep Learning (1709.02150v1)

Published 7 Sep 2017 in cs.CV and cs.RO

Abstract: Matching sonar images with high accuracy has been a problem for a long time, as sonar images are inherently hard to model due to reflections, noise and viewpoint dependence. Autonomous Underwater Vehicles require good sonar image matching capabilities for tasks such as tracking, simultaneous localization and mapping (SLAM) and some cases of object detection/recognition. We propose the use of Convolutional Neural Networks (CNN) to learn a matching function that can be trained from labeled sonar data, after pre-processing to generate matching and non-matching pairs. In a dataset of 39K training pairs, we obtain 0.91 Area under the ROC Curve (AUC) for a CNN that outputs a binary classification matching decision, and 0.89 AUC for another CNN that outputs a matching score. In comparison, classical keypoint matching methods like SIFT, SURF, ORB and AKAZE obtain AUC 0.61 to 0.68. Alternative learning methods obtain similar results, with a Random Forest Classifier obtaining AUC 0.79, and a Support Vector Machine resulting in AUC 0.66.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.