Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robust Exponential Worst Cases for Divide-et-Impera Algorithms for Parity Games (1709.02099v1)

Published 7 Sep 2017 in cs.LO, cs.DS, and cs.GT

Abstract: The McNaughton-Zielonka divide et impera algorithm is the simplest and most flexible approach available in the literature for determining the winner in a parity game. Despite its theoretical worst-case complexity and the negative reputation as a poorly effective algorithm in practice, it has been shown to rank among the best techniques for the solution of such games. Also, it proved to be resistant to a lower bound attack, even more than the strategy improvements approaches, and only recently a family of games on which the algorithm requires exponential time has been provided by Friedmann. An easy analysis of this family shows that a simple memoization technique can help the algorithm solve the family in polynomial time. The same result can also be achieved by exploiting an approach based on the dominion-decomposition techniques proposed in the literature. These observations raise the question whether a suitable combination of dynamic programming and game-decomposition techniques can improve on the exponential worst case of the original algorithm. In this paper we answer this question negatively, by providing a robustly exponential worst case, showing that no intertwining of the above mentioned techniques can help mitigating the exponential nature of the divide et impera approaches.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.