Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Stabilizing Weighted Graphs (1709.01982v2)

Published 6 Sep 2017 in cs.DS, cs.DM, cs.GT, and math.CO

Abstract: An edge-weighted graph $G=(V,E)$ is called stable if the value of a maximum-weight matching equals the value of a maximum-weight fractional matching. Stable graphs play an important role in some interesting game theory problems, such as network bargaining games and cooperative matching games, because they characterize instances which admit stable outcomes. Motivated by this, in the last few years many researchers have investigated the algorithmic problem of turning a given graph into a stable one, via edge- and vertex-removal operations. However, all the algorithmic results developed in the literature so far only hold for unweighted instances, i.e., assuming unit weights on the edges of $G$. We give the first polynomial-time algorithm to find a minimum cardinality subset of vertices whose removal from $G$ yields a stable graph, for any weighted graph $G$. The algorithm is combinatorial and exploits new structural properties of basic fractional matchings, which are of independent interest. In particular, one of the main ingredients of our result is the development of a polynomial-time algorithm to compute a basic maximum-weight fractional matching with minimum number of odd cycles in its support. This generalizes a fundamental and classical result on unweighted matchings given by Balas more than 30 years ago, which we expect to prove useful beyond this particular application. In contrast, we show that the problem of finding a minimum cardinality subset of edges whose removal from a weighted graph $G$ yields a stable graph, does not admit any constant-factor approximation algorithm, unless $P=NP$. In this setting, we develop an $O(\Delta)$-approximation algorithm for the problem, where $\Delta$ is the maximum degree of a node in $G$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube