Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Semi-Supervised Approach to Detecting Stance in Tweets (1709.01895v1)

Published 3 Sep 2017 in cs.CL

Abstract: Stance classification aims to identify, for a particular issue under discussion, whether the speaker or author of a conversational turn has Pro (Favor) or Con (Against) stance on the issue. Detecting stance in tweets is a new task proposed for SemEval-2016 Task6, involving predicting stance for a dataset of tweets on the topics of abortion, atheism, climate change, feminism and Hillary Clinton. Given the small size of the dataset, our team created our own topic-specific training corpus by developing a set of high precision hashtags for each topic that were used to query the twitter API, with the aim of developing a large training corpus without additional human labeling of tweets for stance. The hashtags selected for each topic were predicted to be stance-bearing on their own. Experimental results demonstrate good performance for our features for opinion-target pairs based on generalizing dependency features using sentiment lexicons.

Citations (22)

Summary

We haven't generated a summary for this paper yet.