Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Compact Kernel Approximation for 3D Action Recognition (1709.01695v2)

Published 6 Sep 2017 in cs.CV

Abstract: 3D action recognition was shown to benefit from a covariance representation of the input data (joint 3D positions). A kernel machine feed with such feature is an effective paradigm for 3D action recognition, yielding state-of-the-art results. Yet, the whole framework is affected by the well-known scalability issue. In fact, in general, the kernel function has to be evaluated for all pairs of instances inducing a Gram matrix whose complexity is quadratic in the number of samples. In this work we reduce such complexity to be linear by proposing a novel and explicit feature map to approximate the kernel function. This allows to train a linear classifier with an explicit feature encoding, which implicitly implements a Log-Euclidean machine in a scalable fashion. Not only we prove that the proposed approximation is unbiased, but also we work out an explicit strong bound for its variance, attesting a theoretical superiority of our approach with respect to existing ones. Experimentally, we verify that our representation provides a compact encoding and outperforms other approximation schemes on a number of publicly available benchmark datasets for 3D action recognition.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.