Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Suboptimality of Proximal Gradient Descent for $\ell^{0}$ Sparse Approximation (1709.01230v1)

Published 5 Sep 2017 in math.OC and cs.LG

Abstract: We study the proximal gradient descent (PGD) method for $\ell{0}$ sparse approximation problem as well as its accelerated optimization with randomized algorithms in this paper. We first offer theoretical analysis of PGD showing the bounded gap between the sub-optimal solution by PGD and the globally optimal solution for the $\ell{0}$ sparse approximation problem under conditions weaker than Restricted Isometry Property widely used in compressive sensing literature. Moreover, we propose randomized algorithms to accelerate the optimization by PGD using randomized low rank matrix approximation (PGD-RMA) and randomized dimension reduction (PGD-RDR). Our randomized algorithms substantially reduces the computation cost of the original PGD for the $\ell{0}$ sparse approximation problem, and the resultant sub-optimal solution still enjoys provable suboptimality, namely, the sub-optimal solution to the reduced problem still has bounded gap to the globally optimal solution to the original problem.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.