Papers
Topics
Authors
Recent
2000 character limit reached

A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC (1709.01180v1)

Published 4 Sep 2017 in stat.ML

Abstract: Stochastic gradient Markov Chain Monte Carlo (SG-MCMC) has been developed as a flexible family of scalable Bayesian sampling algorithms. However, there has been little theoretical analysis of the impact of minibatch size to the algorithm's convergence rate. In this paper, we prove that under a limited computational budget/time, a larger minibatch size leads to a faster decrease of the mean squared error bound (thus the fastest one corresponds to using full gradients), which motivates the necessity of variance reduction in SG-MCMC. Consequently, by borrowing ideas from stochastic optimization, we propose a practical variance-reduction technique for SG-MCMC, that is efficient in both computation and storage. We develop theory to prove that our algorithm induces a faster convergence rate than standard SG-MCMC. A number of large-scale experiments, ranging from Bayesian learning of logistic regression to deep neural networks, validate the theory and demonstrate the superiority of the proposed variance-reduction SG-MCMC framework.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.