Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Information Theoretic Analysis of DNN-HMM Acoustic Modeling (1709.01144v2)

Published 29 Aug 2017 in cs.SD, cs.CL, and cs.LG

Abstract: We propose an information theoretic framework for quantitative assessment of acoustic modeling for hidden Markov model (HMM) based automatic speech recognition (ASR). Acoustic modeling yields the probabilities of HMM sub-word states for a short temporal window of speech acoustic features. We cast ASR as a communication channel where the input sub-word probabilities convey the information about the output HMM state sequence. The quality of the acoustic model is thus quantified in terms of the information transmitted through this channel. The process of inferring the most likely HMM state sequence from the sub-word probabilities is known as decoding. HMM based decoding assumes that an acoustic model yields accurate state-level probabilities and the data distribution given the underlying hidden state is independent of any other state in the sequence. We quantify 1) the acoustic model accuracy and 2) its robustness to mismatch between data and the HMM conditional independence assumption in terms of some mutual information quantities. In this context, exploiting deep neural network (DNN) posterior probabilities leads to a simple and straightforward analysis framework to assess shortcomings of the acoustic model for HMM based decoding. This analysis enables us to evaluate the Gaussian mixture acoustic model (GMM) and the importance of many hidden layers in DNNs without any need of explicit speech recognition. In addition, it sheds light on the contribution of low-dimensional models to enhance acoustic modeling for better compliance with the HMM based decoding requirements.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube