Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Unified Query-based Generative Model for Question Generation and Question Answering (1709.01058v2)

Published 4 Sep 2017 in cs.CL

Abstract: We propose a query-based generative model for solving both tasks of question generation (QG) and question an- swering (QA). The model follows the classic encoder- decoder framework. The encoder takes a passage and a query as input then performs query understanding by matching the query with the passage from multiple per- spectives. The decoder is an attention-based Long Short Term Memory (LSTM) model with copy and coverage mechanisms. In the QG task, a question is generated from the system given the passage and the target answer, whereas in the QA task, the answer is generated given the question and the passage. During the training stage, we leverage a policy-gradient reinforcement learning algorithm to overcome exposure bias, a major prob- lem resulted from sequence learning with cross-entropy loss. For the QG task, our experiments show higher per- formances than the state-of-the-art results. When used as additional training data, the automatically generated questions even improve the performance of a strong ex- tractive QA system. In addition, our model shows bet- ter performance than the state-of-the-art baselines of the generative QA task.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.