Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

From Review to Rating: Exploring Dependency Measures for Text Classification (1709.00813v1)

Published 4 Sep 2017 in cs.CL

Abstract: Various text analysis techniques exist, which attempt to uncover unstructured information from text. In this work, we explore using statistical dependence measures for textual classification, representing text as word vectors. Student satisfaction scores on a 3-point scale and their free text comments written about university subjects are used as the dataset. We have compared two textual representations: a frequency word representation and term frequency relationship to word vectors, and found that word vectors provide a greater accuracy. However, these word vectors have a large number of features which aggravates the burden of computational complexity. Thus, we explored using a non-linear dependency measure for feature selection by maximizing the dependence between the text reviews and corresponding scores. Our quantitative and qualitative analysis on a student satisfaction dataset shows that our approach achieves comparable accuracy to the full feature vector, while being an order of magnitude faster in testing. These text analysis and feature reduction techniques can be used for other textual data applications such as sentiment analysis.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.