Papers
Topics
Authors
Recent
2000 character limit reached

Blind Stereo Image Quality Assessment Inspired by Brain Sensory-Motor Fusion (1709.00725v1)

Published 3 Sep 2017 in cs.CV

Abstract: The use of 3D and stereo imaging is rapidly increasing. Compression, transmission, and processing could degrade the quality of stereo images. Quality assessment of such images is different than their 2D counterparts. Metrics that represent 3D perception by human visual system (HVS) are expected to assess stereoscopic quality more accurately. In this paper, inspired by brain sensory/motor fusion process, two stereo images are fused together. Then from every fused image two synthesized images are extracted. Effects of different distortions on statistical distributions of the synthesized images are shown. Based on the observed statistical changes, features are extracted from these synthesized images. These features can reveal type and severity of distortions. Then, a stacked neural network model is proposed, which learns the extracted features and accurately evaluates the quality of stereo images. This model is tested on 3D images of popular databases. Experimental results show the superiority of this method over state of the art stereo image quality assessment approaches

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.