Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Difficulty-level Modeling of Ontology-based Factual Questions (1709.00670v1)

Published 3 Sep 2017 in cs.AI

Abstract: Semantics based knowledge representations such as ontologies are found to be very useful in automatically generating meaningful factual questions. Determining the difficulty level of these system generated questions is helpful to effectively utilize them in various educational and professional applications. The existing approaches for finding the difficulty level of factual questions are very simple and are limited to a few basic principles. We propose a new methodology for this problem by considering an educational theory called Item Response Theory (IRT). In the IRT, knowledge proficiency of end users (learners) are considered for assigning difficulty levels, because of the assumptions that a given question is perceived differently by learners of various proficiencies. We have done a detailed study on the features (factors) of a question statement which could possibly determine its difficulty level for three learner categories (experts, intermediates and beginners). We formulate ontology based metrics for the same. We then train three logistic regression models to predict the difficulty level corresponding to the three learner categories.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.