Papers
Topics
Authors
Recent
2000 character limit reached

Communication-efficient Algorithm for Distributed Sparse Learning via Two-way Truncation (1709.00537v2)

Published 2 Sep 2017 in stat.ML, cs.LG, and math.OC

Abstract: We propose a communicationally and computationally efficient algorithm for high-dimensional distributed sparse learning. At each iteration, local machines compute the gradient on local data and the master machine solves one shifted $l_1$ regularized minimization problem. The communication cost is reduced from constant times of the dimension number for the state-of-the-art algorithm to constant times of the sparsity number via Two-way Truncation procedure. Theoretically, we prove that the estimation error of the proposed algorithm decreases exponentially and matches that of the centralized method under mild assumptions. Extensive experiments on both simulated data and real data verify that the proposed algorithm is efficient and has performance comparable with the centralized method on solving high-dimensional sparse learning problems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.