Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Space-efficient classical and quantum algorithms for the shortest vector problem (1709.00378v2)

Published 31 Aug 2017 in cs.DS and quant-ph

Abstract: A lattice is the integer span of some linearly independent vectors. Lattice problems have many significant applications in coding theory and cryptographic systems for their conjectured hardness. The Shortest Vector Problem (SVP), which is to find the shortest non-zero vector in a lattice, is one of the well-known problems that are believed to be hard to solve, even with a quantum computer. In this paper we propose space-efficient classical and quantum algorithms for solving SVP. Currently the best time-efficient algorithm for solving SVP takes $2{n+o(n)}$ time and $2{n+o(n)}$ space. Our classical algorithm takes $2{2.05n+o(n)}$ time to solve SVP with only $2{0.5n+o(n)}$ space. We then modify our classical algorithm to a quantum version, which can solve SVP in time $2{1.2553n+o(n)}$ with $2{0.5n+o(n)}$ classical space and only poly(n) qubits.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube