Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting with Lexicographic Programming: Addressing Class Imbalance without Cost Tuning (1708.09684v2)

Published 31 Aug 2017 in cs.CV

Abstract: A large amount of research effort has been dedicated to adapting boosting for imbalanced classification. However, boosting methods are yet to be satisfactorily immune to class imbalance, especially for multi-class problems. This is because most of the existing solutions for handling class imbalance rely on expensive cost set tuning for determining the proper level of compensation. We show that the assignment of weights to the component classifiers of a boosted ensemble can be thought of as a game of Tug of War between the classes in the margin space. We then demonstrate how this insight can be used to attain a good compromise between the rare and abundant classes without having to resort to cost set tuning, which has long been the norm for imbalanced classification. The solution is based on a lexicographic linear programming framework which requires two stages. Initially, class-specific component weight combinations are found so as to minimize a hinge loss individually for each of the classes. Subsequently, the final component weights are assigned so that the maximum deviation from the class-specific minimum loss values (obtained in the previous stage) is minimized. Hence, the proposal is not only restricted to two-class situations, but is also readily applicable to multi-class problems. Additionally,we also derive the dual formulation corresponding to the proposed framework. Experiments conducted on artificial and real-world imbalanced datasets as well as on challenging applications such as hyperspectral image classification and ImageNet classification establish the efficacy of the proposal.

Citations (27)

Summary

We haven't generated a summary for this paper yet.