Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An O(log log m)-competitive Algorithm for Online Machine Minimization (1708.09046v2)

Published 29 Aug 2017 in cs.DS

Abstract: This paper considers the online machine minimization problem, a basic real time scheduling problem. The setting for this problem consists of n jobs that arrive over time, where each job has a deadline by which it must be completed. The goal is to design an online scheduler that feasibly schedules the jobs on a nearly minimal number of machines. An algorithm is c-machine optimal if the algorithm will feasibly schedule a collection of jobs on cm machines if there exists a feasible schedule on m machines. For over two decades the best known result was a O(log P)-machine optimal algorithm, where P is the ratio of the maximum to minimum job size. In a recent breakthrough, a O(log m)-machine optimal algorithm was given. In this paper, we exponentially improve on this recent result by giving a O(log log m)-machine optimal algorithm.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.