Emergent Mind

Shared Memory Parallelization of MTTKRP for Dense Tensors

(1708.08976)
Published Aug 29, 2017 in cs.DC

Abstract

The matricized-tensor times Khatri-Rao product (MTTKRP) is the computational bottleneck for algorithms computing CP decompositions of tensors. In this paper, we develop shared-memory parallel algorithms for MTTKRP involving dense tensors. The algorithms cast nearly all of the computation as matrix operations in order to use optimized BLAS subroutines, and they avoid reordering tensor entries in memory. We benchmark sequential and parallel performance of our implementations, demonstrating high sequential performance and efficient parallel scaling. We use our parallel implementation to compute a CP decomposition of a neuroimaging data set and achieve a speedup of up to $7.4\times$ over existing parallel software.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.