Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Spectral Sparsification of Simplicial Complexes for Clustering and Label Propagation (1708.08436v3)

Published 28 Aug 2017 in cs.CG, cs.DM, and cs.DS

Abstract: As a generalization of the use of graphs to describe pairwise interactions, simplicial complexes can be used to model higher-order interactions between three or more objects in complex systems. There has been a recent surge in activity for the development of data analysis methods applicable to simplicial complexes, including techniques based on computational topology, higher-order random processes, generalized Cheeger inequalities, isoperimetric inequalities, and spectral methods. In particular, spectral learning methods (e.g. label propagation and clustering) that directly operate on simplicial complexes represent a new direction for analyzing such complex datasets. To apply spectral learning methods to massive datasets modeled as simplicial complexes, we develop a method for sparsifying simplicial complexes that preserves the spectrum of the associated Laplacian matrices. We show that the theory of Spielman and Srivastava for the sparsification of graphs extends to simplicial complexes via the up Laplacian. In particular, we introduce a generalized effective resistance for simplices, provide an algorithm for sparsifying simplicial complexes at a fixed dimension, and give a specific version of the generalized Cheeger inequality for weighted simplicial complexes. Finally, we introduce higher-order generalizations of spectral clustering and label propagation for simplicial complexes and demonstrate via experiments the utility of the proposed spectral sparsification method for these applications.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.