Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Scheduling Constraint Based Abstraction Refinement for Multi-Threaded Program Verification (1708.08323v2)

Published 22 Aug 2017 in cs.PL

Abstract: Bounded model checking is among the most efficient techniques for the automatic verification of concurrent programs. However, encoding all possible interleavings often requires a huge and complex formula, which significantly limits the salability. This paper proposes a novel and efficient abstraction refinement method for multi-threaded program verification. Observing that the huge formula is usually dominated by the exact encoding of the scheduling constraint, this paper proposes a \tsc based abstraction refinement method, which avoids the huge and complex encoding of BMC. In addition, to obtain an effective refinement, we have devised two graph-based algorithms over event order graph for counterexample validation and refinement generation, which can always obtain a small yet effective refinement constraint. Enhanced by two constraint-based algorithms for counterexample validation and refinement generation, we have proved that our method is sound and complete w.r.t. the given loop unwinding depth. Experimental results on \svcompc benchmarks indicate that our method is promising and significantly outperforms the existing state-of-the-art tools.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.