Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Fast Access to Columnar, Hierarchically Nested Data via Code Transformation (1708.08319v2)

Published 20 Aug 2017 in cs.PL, cs.DB, and cs.IR

Abstract: Big Data query systems represent data in a columnar format for fast, selective access, and in some cases (e.g. Apache Drill), perform calculations directly on the columnar data without row materialization, avoiding runtime costs. However, many analysis procedures cannot be easily or efficiently expressed as SQL. In High Energy Physics, the majority of data processing requires nested loops with complex dependencies. When faced with tasks like these, the conventional approach is to convert the columnar data back into an object form, usually with a performance price. This paper describes a new technique to transform procedural code so that it operates on hierarchically nested, columnar data natively, without row materialization. It can be viewed as a compiler pass on the typed abstract syntax tree, rewriting references to objects as columnar array lookups. We will also present performance comparisons between transformed code and conventional object-oriented code in a High Energy Physics context.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.