Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Compromise Principle in Deep Monocular Depth Estimation (1708.08267v2)

Published 28 Aug 2017 in cs.CV

Abstract: Monocular depth estimation, which plays a key role in understanding 3D scene geometry, is fundamentally an ill-posed problem. Existing methods based on deep convolutional neural networks (DCNNs) have examined this problem by learning convolutional networks to estimate continuous depth maps from monocular images. However, we find that training a network to predict a high spatial resolution continuous depth map often suffers from poor local solutions. In this paper, we hypothesize that achieving a compromise between spatial and depth resolutions can improve network training. Based on this "compromise principle", we propose a regression-classification cascaded network (RCCN), which consists of a regression branch predicting a low spatial resolution continuous depth map and a classification branch predicting a high spatial resolution discrete depth map. The two branches form a cascaded structure allowing the classification and regression branches to benefit from each other. By leveraging large-scale raw training datasets and some data augmentation strategies, our network achieves top or state-of-the-art results on the NYU Depth V2, KITTI, and Make3D benchmarks.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.