Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TraNNsformer: Neural network transformation for memristive crossbar based neuromorphic system design (1708.07949v2)

Published 26 Aug 2017 in cs.ET and cs.NE

Abstract: Implementation of Neuromorphic Systems using post Complementary Metal-Oxide-Semiconductor (CMOS) technology based Memristive Crossbar Array (MCA) has emerged as a promising solution to enable low-power acceleration of neural networks. However, the recent trend to design Deep Neural Networks (DNNs) for achieving human-like cognitive abilities poses significant challenges towards the scalable design of neuromorphic systems (due to the increase in computation/storage demands). Network pruning [7] is a powerful technique to remove redundant connections for designing optimally connected (maximally sparse) DNNs. However, such pruning techniques induce irregular connections that are incoherent to the crossbar structure. Eventually they produce DNNs with highly inefficient hardware realizations (in terms of area and energy). In this work, we propose TraNNsformer - an integrated training framework that transforms DNNs to enable their efficient realization on MCA-based systems. TraNNsformer first prunes the connectivity matrix while forming clusters with the remaining connections. Subsequently, it retrains the network to fine tune the connections and reinforce the clusters. This is done iteratively to transform the original connectivity into an optimally pruned and maximally clustered mapping. Without accuracy loss, TraNNsformer reduces the area (energy) consumption by 28% - 55% (49% - 67%) with respect to the original network. Compared to network pruning, TraNNsformer achieves 28% - 49% (15% - 29%) area (energy) savings. Furthermore, TraNNsformer is a technology-aware framework that allows mapping a given DNN to any MCA size permissible by the memristive technology for reliable operations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Aayush Ankit (15 papers)
  2. Abhronil Sengupta (50 papers)
  3. Kaushik Roy (265 papers)
Citations (36)

Summary

We haven't generated a summary for this paper yet.