Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

LERC: Coordinated Cache Management for Data-Parallel Systems (1708.07941v1)

Published 26 Aug 2017 in cs.DC

Abstract: Memory caches are being aggressively used in today's data-parallel frameworks such as Spark, Tez and Storm. By caching input and intermediate data in memory, compute tasks can witness speedup by orders of magnitude. To maximize the chance of in-memory data access, existing cache algorithms, be it recency- or frequency-based, settle on cache hit ratio as the optimization objective. However, unlike the conventional belief, we show in this paper that simply pursuing a higher cache hit ratio of individual data blocks does not necessarily translate into faster task completion in data-parallel environments. A data-parallel task typically depends on multiple input data blocks. Unless all of these blocks are cached in memory, no speedup will result. To capture this all-or-nothing property, we propose a more relevant metric, called effective cache hit ratio. Specifically, a cache hit of a data block is said to be effective if it can speed up a compute task. In order to optimize the effective cache hit ratio, we propose the Least Effective Reference Count (LERC) policy that persists the dependent blocks of a compute task as a whole in memory. We have implemented the LERC policy as a memory manager in Spark and evaluated its performance through Amazon EC2 deployment. Evaluation results demonstrate that LERC helps speed up data-parallel jobs by up to 37% compared with the widely employed least-recently-used (LRU) policy.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.