Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

$\ell_1$ Regression using Lewis Weights Preconditioning and Stochastic Gradient Descent (1708.07821v3)

Published 25 Aug 2017 in cs.DS

Abstract: We present preconditioned stochastic gradient descent (SGD) algorithms for the $\ell_1$ minimization problem $\min_{x}|A x - b|_1$ in the overdetermined case, where there are far more constraints than variables. Specifically, we have $A \in \mathbb{R}{n \times d}$ for $n \gg d$. Commonly known as the Least Absolute Deviations problem, $\ell_1$ regression can be used to solve many important combinatorial problems, such as minimum cut and shortest path. SGD-based algorithms are appealing for their simplicity and practical efficiency. Our primary insight is that careful preprocessing can yield preconditioned matrices $\tilde{A}$ with strong properties (besides good condition number and low-dimension) that allow for faster convergence of gradient descent. In particular, we precondition using Lewis weights to obtain an isotropic matrix with fewer rows and strong upper bounds on all row norms. We leverage these conditions to find a good initialization, which we use along with recent smoothing reductions and accelerated stochastic gradient descent algorithms to achieve $\epsilon$ relative error in $\tilde{O}(nnz(A) + d{2.5} \epsilon{-2})$ time with high probability, where $nnz(A)$ is the number of non-zeros in $A$. This improves over the previous best result using gradient descent for $\ell_1$ regression. We also match the best known running times for interior point methods in several settings. Finally, we also show that if our original matrix $A$ is approximately isotropic and the row norms are approximately equal, we can give an algorithm that avoids using fast matrix multiplication and obtains a running time of $\tilde{O}(nnz(A) + s d{1.5}\epsilon{-2} + d2\epsilon{-2})$, where $s$ is the maximum number of non-zeros in a row of $A$. In this setting, we beat the best interior point methods for certain parameter regimes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.