Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stability of the Lanczos Method for Matrix Function Approximation (1708.07788v2)

Published 25 Aug 2017 in cs.DS, math.NA, and cs.NA

Abstract: The ubiquitous Lanczos method can approximate $f(A)x$ for any symmetric $n \times n$ matrix $A$, vector $x$, and function $f$. In exact arithmetic, the method's error after $k$ iterations is bounded by the error of the best degree-$k$ polynomial uniformly approximating $f(x)$ on the range $[\lambda_{min}(A), \lambda_{max}(A)]$. However, despite decades of work, it has been unclear if this powerful guarantee holds in finite precision. We resolve this problem, proving that when $\max_{x \in [\lambda_{min}, \lambda_{max}]}|f(x)| \le C$, Lanczos essentially matches the exact arithmetic guarantee if computations use roughly $\log(nC|A|)$ bits of precision. Our proof extends work of Druskin and Knizhnerman [DK91], leveraging the stability of the classic Chebyshev recurrence to bound the stability of any polynomial approximating $f(x)$. We also study the special case of $f(A) = A{-1}$, where stronger guarantees hold. In exact arithmetic Lanczos performs as well as the best polynomial approximating $1/x$ at each of $A$'s eigenvalues, rather than on the full eigenvalue range. In seminal work, Greenbaum gives an approach to extending this bound to finite precision: she proves that finite precision Lanczos and the related CG method match any polynomial approximating $1/x$ in a tiny range around each eigenvalue [Gre89]. For $A{-1}$, this bound appears stronger than ours. However, we exhibit matrices with condition number $\kappa$ where exact arithmetic Lanczos converges in $polylog(\kappa)$ iterations, but Greenbaum's bound predicts $\Omega(\kappa{1/5})$ iterations. It thus cannot offer significant improvement over the $O(\kappa{1/2})$ bound achievable via our result. Our analysis raises the question of if convergence in less than $poly(\kappa)$ iterations can be expected in finite precision, even for matrices with clustered, skewed, or otherwise favorable eigenvalue distributions.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: