Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Relaxed Spatio-Temporal Deep Feature Aggregation for Real-Fake Expression Prediction (1708.07335v1)

Published 24 Aug 2017 in cs.CV

Abstract: Frame-level visual features are generally aggregated in time with the techniques such as LSTM, Fisher Vectors, NetVLAD etc. to produce a robust video-level representation. We here introduce a learnable aggregation technique whose primary objective is to retain short-time temporal structure between frame-level features and their spatial interdependencies in the representation. Also, it can be easily adapted to the cases where there have very scarce training samples. We evaluate the method on a real-fake expression prediction dataset to demonstrate its superiority. Our method obtains 65% score on the test dataset in the official MAP evaluation and there is only one misclassified decision with the best reported result in the Chalearn Challenge (i.e. 66:7%) . Lastly, we believe that this method can be extended to different problems such as action/event recognition in future.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.