Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Error exponents of typical random codes (1708.07301v1)

Published 24 Aug 2017 in cs.IT and math.IT

Abstract: We define the error exponent of the typical random code as the long-block limit of the negative normalized expectation of the logarithm of the error probability of the random code, as opposed to the traditional random coding error exponent, which is the limit of the negative normalized logarithm of the expectation of the error probability. For the ensemble of uniformly randomly drawn fixed composition codes, we provide exact error exponents of typical random codes for a general discrete memoryless channel (DMC) and a wide class of (stochastic) decoders, collectively referred to as the generalized likelihood decoder (GLD). This ensemble of fixed composition codes is shown to be no worse than any other ensemble of independent codewords that are drawn under a permutation--invariant distribution (e.g., i.i.d. codewords). We also present relationships between the error exponent of the typical random code and the ordinary random coding error exponent, as well as the expurgated exponent for the GLD. Finally, we demonstrate that our analysis technique is applicable also to more general communication scenarios, such as list decoding (for fixed-size lists) as well as decoding with an erasure/list option in Forney's sense.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube