Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Big Data Meets HPC Log Analytics: Scalable Approach to Understanding Systems at Extreme Scale (1708.06884v1)

Published 23 Aug 2017 in cs.DC and cs.DB

Abstract: Today's high-performance computing (HPC) systems are heavily instrumented, generating logs containing information about abnormal events, such as critical conditions, faults, errors and failures, system resource utilization, and about the resource usage of user applications. These logs, once fully analyzed and correlated, can produce detailed information about the system health, root causes of failures, and analyze an application's interactions with the system, providing valuable insights to domain scientists and system administrators. However, processing HPC logs requires a deep understanding of hardware and software components at multiple layers of the system stack. Moreover, most log data is unstructured and voluminous, making it more difficult for system users and administrators to manually inspect the data. With rapid increases in the scale and complexity of HPC systems, log data processing is becoming a big data challenge. This paper introduces a HPC log data analytics framework that is based on a distributed NoSQL database technology, which provides scalability and high availability, and the Apache Spark framework for rapid in-memory processing of the log data. The analytics framework enables the extraction of a range of information about the system so that system administrators and end users alike can obtain necessary insights for their specific needs. We describe our experience with using this framework to glean insights from the log data about system behavior from the Titan supercomputer at the Oak Ridge National Laboratory.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.