Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Relationship between Primal-Dual Method of Multipliers and Kalman Filter (1708.06881v1)

Published 23 Aug 2017 in math.OC, cs.DC, cs.IT, and math.IT

Abstract: Recently the primal-dual method of multipliers (PDMM), a novel distributed optimization method, was proposed for solving a general class of decomposable convex optimizations over graphic models. In this work, we first study the convergence properties of PDMM for decomposable quadratic optimizations over tree-structured graphs. We show that with proper parameter selection, PDMM converges to its optimal solution in finite number of iterations. We then apply PDMM for the causal estimation problem over a statistical linear state-space model. We show that PDMM and the Kalman filter have the same update expressions, where PDMM can be interpreted as solving a sequence of quadratic optimizations over a growing chain graph.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.