Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Locally Differentially Private Heavy Hitter Identification (1708.06674v1)

Published 22 Aug 2017 in cs.CR

Abstract: The notion of Local Differential Privacy (LDP) enables users to answer sensitive questions while preserving their privacy. The basic LDP frequent oracle protocol enables the aggregator to estimate the frequency of any value. But when the domain of input values is large, finding the most frequent values, also known as the heavy hitters, by estimating the frequencies of all possible values, is computationally infeasible. In this paper, we propose an LDP protocol for identifying heavy hitters. In our proposed protocol, which we call Prefix Extending Method (PEM), users are divided into groups, with each group reporting a prefix of her value. We analyze how to choose optimal parameters for the protocol and identify two design principles for designing LDP protocols with high utility. Experiments on both synthetic and real-world datasets demonstrate the advantage of our proposed protocol.

Citations (106)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.