Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CNN Fixations: An unraveling approach to visualize the discriminative image regions (1708.06670v3)

Published 22 Aug 2017 in cs.CV

Abstract: Deep convolutional neural networks (CNN) have revolutionized various fields of vision research and have seen unprecedented adoption for multiple tasks such as classification, detection, captioning, etc. However, they offer little transparency into their inner workings and are often treated as black boxes that deliver excellent performance. In this work, we aim at alleviating this opaqueness of CNNs by providing visual explanations for the network's predictions. Our approach can analyze variety of CNN based models trained for vision applications such as object recognition and caption generation. Unlike existing methods, we achieve this via unraveling the forward pass operation. Proposed method exploits feature dependencies across the layer hierarchy and uncovers the discriminative image locations that guide the network's predictions. We name these locations CNN-Fixations, loosely analogous to human eye fixations. Our approach is a generic method that requires no architectural changes, additional training or gradient computation and computes the important image locations (CNN Fixations). We demonstrate through a variety of applications that our approach is able to localize the discriminative image locations across different network architectures, diverse vision tasks and data modalities.

Citations (56)

Summary

We haven't generated a summary for this paper yet.