Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Recover Feasible Solutions for SOCP Relaxation of Optimal Power Flow Problems in Mesh Networks (1708.06504v2)

Published 22 Aug 2017 in cs.SY

Abstract: Convex relaxation methods have been studied and used extensively to obtain an optimal solution to the optimal power flow (OPF) problem. Meanwhile, convex relaxed power flow equations are also prerequisites for efficiently solving a wide range of problems in power systems including mixed-integer nonlinear programming (MINLP) and distributed optimization. When the exactness of convex relaxations is not guaranteed, it is important to recover a feasible solution for the convex relaxation methods. This paper presents an alternative convex optimization (ACP) approach that can efficiently recover a feasible solution from the result of second-order cone programming (SOCP) relaxed OPF in mesh networks. The OPF problem is first formulated as a difference-of-convex (DC) programming problem, then efficiently solved by a penalty convex concave procedure (CCP). CCP iteratively linearizes the concave parts of the power flow constraints and solves a convex approximation of the DCP problem. Numerical tests show that the proposed method can find a global or near-global optimal solution to the AC OPF problem, and outperforms those semidefinite programming (SDP) based algorithms.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)