Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Approximate nearest neighbors search without false negatives for $l_2$ for $c>\sqrt{\log\log{n}}$ (1708.06395v3)

Published 21 Aug 2017 in cs.CG and cs.DS

Abstract: In this paper, we report progress on answering the open problem presented by Pagh~[14], who considered the nearest neighbor search without false negatives for the Hamming distance. We show new data structures for solving the $c$-approximate nearest neighbors problem without false negatives for Euclidean high dimensional space $\mathcal{R}d$. These data structures work for any $c = \omega(\sqrt{\log{\log{n}}})$, where $n$ is the number of points in the input set, with poly-logarithmic query time and polynomial preprocessing time. This improves over the known algorithms, which require $c$ to be $\Omega(\sqrt{d})$. This improvement is obtained by applying a sequence of reductions, which are interesting on their own. First, we reduce the problem to $d$ instances of dimension logarithmic in $n$. Next, these instances are reduced to a number of $c$-approximate nearest neighbor search instances in $\big(\mathbb{R}k\big)L$ space equipped with metric $m(x,y) = \max_{1 \le i \le L}(\lVert x_i - y_i\rVert_2)$.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.