Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning Spread-out Local Feature Descriptors (1708.06320v1)

Published 21 Aug 2017 in cs.CV

Abstract: We propose a simple, yet powerful regularization technique that can be used to significantly improve both the pairwise and triplet losses in learning local feature descriptors. The idea is that in order to fully utilize the expressive power of the descriptor space, good local feature descriptors should be sufficiently "spread-out" over the space. In this work, we propose a regularization term to maximize the spread in feature descriptor inspired by the property of uniform distribution. We show that the proposed regularization with triplet loss outperforms existing Euclidean distance based descriptor learning techniques by a large margin. As an extension, the proposed regularization technique can also be used to improve image-level deep feature embedding.

Citations (141)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.