Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Probabilistic Relation Induction in Vector Space Embeddings (1708.06266v1)

Published 21 Aug 2017 in cs.AI and cs.CL

Abstract: Word embeddings have been found to capture a surprisingly rich amount of syntactic and semantic knowledge. However, it is not yet sufficiently well-understood how the relational knowledge that is implicitly encoded in word embeddings can be extracted in a reliable way. In this paper, we propose two probabilistic models to address this issue. The first model is based on the common relations-as-translations view, but is cast in a probabilistic setting. Our second model is based on the much weaker assumption that there is a linear relationship between the vector representations of related words. Compared to existing approaches, our models lead to more accurate predictions, and they are more explicit about what can and cannot be extracted from the word embedding.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.